Structure and dynamics of surface uplift induced by incremental sill emplacement

نویسندگان

  • Craig Magee
  • Ian D. Bastow
  • Benjamin van Wyk de Vries
  • Christopher A.-L. Jackson
  • Rachel Hetherington
  • Miruts Hagos
چکیده

Shallow-level sill emplacement can uplift Earth’s surface via forced folding, providing insight into the location and size of potential volcanic eruptions. Linking the structure and dynamics of ground deformation to sill intrusion is thus critical in volcanic hazard assessment. This is challenging, however, because (1) active intrusions cannot be directly observed, meaning that we rely on transient host-rock deformation patterns to model their structure; and (2) where ancient sill-fold structure can be observed, magmatism and deformation has long since ceased. To address this problem, we combine structural and dynamic analyses of the Alu dome, Ethiopia, a 3.5-km-long, 346-m-high, elliptical dome of outward-dipping, tilted lava flows cross-cut by a series of normal faults. Vents distributed around Alu feed lava flows of different ages that radiate out from or deflect around its periphery. These observations, coupled with the absence of bounding faults or a central vent, imply that Alu is not a horst or a volcano, as previously thought, but is instead a forced fold. Interferometric synthetic aperture radar data captured a dynamic growth phase of Alu during a nearby eruption in A.D. 2008, with periods of uplift and subsidence previously attributed to intrusion of a tabular sill at 1 km depth. To localize volcanism beyond its periphery, we contend that Alu is the first forced fold to be recognized to be developing above an incrementally emplaced saucershaped sill, as opposed to a tabular sill or laccolith.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inelastic deformation during sill and laccolith emplacement: Insights from an analytic elastoplastic model

Numerous geological observations evidence that inelastic deformation occurs during sills and laccoliths emplacement. However, most models of sill and laccolith emplacement neglect inelastic processes by assuming purely elastic deformation of the host rock. This assumption has never been tested so that the role of inelastic deformation on the growth dynamics of magma intrusions remains poorly un...

متن کامل

Numerical investigation of variable uplift distribution at the level of landslide-induced acceleration at the concrete dam body crack position

The study of seismic behavior of concrete dams has been considered by many researchers due to the importance of dam safety during earthquakes. Because the destruction of these structures by earthquakes can have adverse economic and social effects. On the other hand, predicting the behavior of concrete dams during an earthquake is one of the most complex and difficult issues in structural dynami...

متن کامل

Lunar floor-fractured craters: Modes of dike and sill emplacement and implications of gas production and intrusion cooling on surface morphology and structure

Lunar floor-fractured craters (FFCs) represent the surface manifestation of a class of shallow crustal intrusions in which magma-filled cracks (dikes) rising to the surface from great depth encounter contrasts in host rock lithology (breccia lens, rigid solidified melt sheet) and intrude laterally to form a sill, laccolith or bysmalith, thereby uplifting and deforming the crater floor. Recent d...

متن کامل

Analytical model of surface uplift above axisymmetric flat-lying magma intrusions: Implications for sill emplacement and geodesy

In this paper, we develop a new axisymmetric analytic model of surface uplift upon sills and laccoliths, based on the formulation of a thin bending plate lying on an elastic foundation. In contrast to most former models also based on thin bending plate formulation, our model accounts for (i) axi-symmetrical uplift, (ii) both upon and outside the intrusion. The model accounts for shallow intrusi...

متن کامل

Emplacement and Assembly of Shallow Intrusions, Henry Mountains, Southern Utah

Exceptional exposures of igneous intrusions of the Henry Mountains of southern Utah allow for the detailed study of three-dimensional pluton geometries as well as igneous emplacement and assembly processes. Examination of the geometry, fabric, and wallrock structures of relatively small intrusions (<3 km map-view diameter) suggests that several plutons in the region (Maiden Creek sill, Trachyte...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017